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ABSTRACT 

!.Iotivntcd by an analogy with Abelian theories, we 

CCIPC~~T:IC~ a ncu duality transformation for non-,\heIian 

gnugr :licorirs. For largt coupling the gauge theory 

V~CUMI s!:ould bzvc its most important contributions from 

cofifuxurntions of the dun1 fields without large fluctuntic.ns. 

me jicnrrating function;a! when expressed in terms of the 

dual vorinhles has a rather simple and suggestive structure 

r;! ictl nani fests sme features of a gauge thcory.but now a 

s:~::;c r!~cory of the dual varinhles with the coupling constant 

irlvrrtcd. K’e discuss several aspects of this representation 

including the possibility of using it as the basis for a 

itron; crllpling expansion for the field theory. MC al.50 

investigate R systematic, formal (perturbative) solution to 

a constraint condition among our dual variables which has the 

form of n Binnchi identity. 
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I. Introduction 

Duality transformations have proven to be extremely useful 

for theories with an AbeIian symmetry! Thc5.e transformations 

are generalizations of the work of Kramers and Wannier on 

the two dimensional Ising model. 
2 

Among their virtues is 

the property that the strong coupling region of a theory is 

mapped into the weak coupling region of another (dual) theory, 

and vice wrsa. (In statistical mechanics, a statistical 

system at high temperatures is mapped into a dual statistical 

system at low temperatures.) Applying a duality transformation 

to a strong coupling theory one may therehy achieve two ends: 

First, since the dual t,hcory is a weak coupling t hrory, the 

picture of the vacuum (or ground stntc) shnrild be mush 

simpler in terms of the dual variables. For sn~xll values 

of the dual coupling constant the fluctuations of the dual 

variables should not bc too large. ‘Second, one may achieve 

a calculational advantage since it may be possible to do 

perrurharion theory in the dual coupling constant. I” 

adGi tion, it is sometimes possible to dcri~r 3 third benrfit 

from vsil;g duality transformations, in that the rzie of the 

topological excitations of the theory may becow transparent. 

llnfortuxately, the gcncralizntion of duality transformations 

to theories with a general non-%clian clmctry is not so straii:t!tforwarC!. 

A number of different approaches to Lhis problem have been tried,’ 

yielding varying amounts of insight, but so far none has 

provided a form which is as elegant as that obtained for 
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Abelian theories. This is particularly frustrating in view 

of the fact that continuum QCD cries out for a tractable 

strong coupling calculational scheme to verify (or disprove) 

confinement and compute the hadronic spectrum. In this paper 

we shall describe another attempt to construct a dual form 

of tl;c non-Abelian gauge theory. our approach leads us to 

a relatively simple and suggestive dual representation of 

the theory with a number of intriguing features. Unfortunately, 

as with other investigations of non-Abelian duality, we have 

not yet been able to establish a well-defined strong coupling 

expansion using our representation. Nevertheless, we feel OUT 

rcprescntat ion is sufficiently attractive to merit further 

study and discussion. 

To motivate our approach, it is convenient to first 

review the derivation of the dual form for an Abelian 

theory . For our purposes the most appropriate theory to 

consider is a four dimensional Abelian gauge theory. There 

are two important ingredient? in the Abelian duality trans- 

formation which we’wish to use in our recipe for non-Abelian 

theories. To illustrate these we first describe the duality 

transformation for the trivial theory of free photons in the 

continuum in four Euclidean dimensions. Following this exercise, 

ke briefly review how the same approach generates a simple 

dual form for non-trivial Abelian theories, using as our 

example compact QED on a four dimensional lattice. To 



finish setting the stage and motivating out work, we then 

briefly describe the problem one encounters if one tries 

to construct a non-Abelian duality transfomation by the most 

straightforward generalization of the Abelian cas~.~ 

The generating functional for free photons is 

z- DAY e 
-&,,,.Fyv) 

(1.1) 

where 

F 
uv - apA, - aYAp 

and 

(FIIY n F,,) : 
I 

d4x FU,(x)F,,,(x) 

The constant k has no physical significance in (1.11, but is the 

analogue of the inverse of a coupling constant in interacti;lg 

theories and is useful for seeing the effect of the transformation. 

We now introduce a field. w,,” which is Fourier conjugate 

to F 
YV’ 

and write (up to overall constants) 

z- 
I 

-~(k.~iyu~y)*iiWyytFIIV) 
DA,, %” e (1.2) 

where ii 1, “Y - I Y 
UVPO PO’ 

The last term cm be integrated by 

parts. Ignoring the surface term (or, choosing bolindary 

conditions so that it is zero) we have 

. (1.3) 
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Integrating over AU, (1.3) becomes 

z- 
I Dw”“e 

--nr l bJuv.~u”) 
n 6 (avGuv (xx 
x 

(1.4) 

The delta functions in (1.4) will be satisfied if and only if 

xe write 

wuv = EiluaO aXBo (1.5) 

IJsing (1.5) in (1.4) yields (up to overall VJnsta*ts) 

I 

’ (a B -a R 
2” ,,B e‘Tli a 0 0 A’ aABo-aoBa) 

11 (1.6) 

which is the same as (1.1). hut with k + l/k. 

There are several points to note about this rbsult. 

First,, while it is perfectly true that (1.1) and (1.6) are 

trivial the process by which we went from (1.1) to (1.6) 

is not. In particular, there are two important steps. 

The first is the Fourier transform (1.2) which has the effect 

of inverting the coupling constant (or what would be the 

coupling constant were the theory not trivial). Second is 

the appearance in (1.4) of a Rianchi-identity-like delta 

function which 1s generated by an integration over the 

original (!cgrces of freedom of the system, in this case the 

A ‘s. 
II 

Ke shall incorporate these two elements in our treat- 

mcnt of non-Abelian theories. Notice also that the 

integration over Au was performed without fixing a gauge. 
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The infinities that result are contained in the over complete 

set of delta functions. Nevertheless, it is important to 

recognize that one can formally carry out the A 
!J 

integrations 

in (1.3) without choosing a gauge. Finally, we remark that 

the fact that (1.6) is a gauge theory is peculiar to four 

dimensions, and is because the dual of a trio-form (i.e. F,,) 

in four dimensions is also a two-form. Had we carried out 

the duality transformation in three dimensions, the delta 

functions in (1.4) would have been satisfied by Gpv - EuviaiO, 

and (1.6) would have become a theory of a free massless 

scalar field. 

We next briefly describe the effect of the duality 

transformation on a non-trivial theory, the U(1) lattice 

gauge theory. A discussion of the U(1) lattice theory 

xi11 give us the background to see where the most straightforward 

generalization of duality to a non-Abelian theory ceases to 

be simple. We recall that the generating functional 

for the U(1) lattice gauge theory is 

n n 

Z- 
‘I 

Delr eL - 
I 

II dep(jl li eBcOs[f~y(j)l (1.7) 

-77 -J .P P 

where 

L - ~31 cos[~,e,(j)-~,@,,(j)l (1.8) 

P 

and f,,(j) is the argument of the cosine in (1.8). A<scciated 



with each link of a four-dimensional hypercubic lattice is a phase. 

e 
igll(j) 

, where j is a vector which labels the lattice site 

(for simplicity we drop the vector notation on j) and II is 

a direction index. Av is a discrete difference operator: 
A 

i.e. h,,Ou(j) : 8u(j)-0v(j-v), and the sum (product) over p in 

(1.8) ((1.7)) is a sum (product) over all plaquettes of the 

latticf. 

Following our discussion of the free photon case, we 

Murier expand each factor in the argument of (1.7) writing 

e 
Bcoslfu,U)l 

-1 1 

%J 

*uy(j)@) ’ 

i~u,tj)fuv(j) 

: c 
B z ;b;“finll”fu” 

(119) 

n 

where for simplicity we have introduced a large 6 approximation 

for the modified Bessel function, I,(B). Using (1.9) in 

(1.7) and ignoring some overall factors. we find after a little 

algebra 

7 

Z- DO 
I 

+&,-~~uA,,~~y 

-II 

n 6(A)&,,) 

(n) j,u 

(l.lOa) 

(l.lOb) 
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The gaggle of Kronecker 6-functions in (l.lOb) are 

generated by integrating over the original gauge fields, 

e”* 
and the sum in the exponent of (l.lOb) is over all 

plaquettes of the lattice (more properly. over all plaquettes 

of the dual lattice). (l.lOb) is clearly of the sane form 

as (1.4). To complete the transformation for the present 

case we note that the delta functions will be satisfied if 

and oniy if we write 

i$ (j 1 - E,,~~,, Ax O,(j) (1.11) 

where the $,, ‘s are integer-valued fields associated with the 

links of the (dual) lattice. (1.10) then becomes 

1 -& (A~o~-A~~~)* Z-1 ep 
where we have ignored the harmless overall infinities 

associated with not choosing a gauge. 

In the dual transformation of this non-trivial Ahelian 

theory we again see the two important ingredients emphasized 

earlier: First, as a result of the Fourier transform 

1 (or character expansion) the coupling constant, E- , is 

inverted in the dual theory and second,as a result of 

integrating over the original field variables which now appear 

linearly in the exponent (see e.g. (l.lOa)) we produce a set 

of Bianchi-identity-like delta functions which force us to a 

certain representation of the new field variables, n 
P’ 
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ln the next section we will present out non-Abelian 

d;laIity transformation based on these ingredients, but first 

we want to address the following question which may have 

arisen in ?he reader’s mind: The starting point for the 

AheIian duality transformation is the character expansion 

for the interactions (e.g. (1.9)). Such an expansion is 

also possible for non-Abelian interactions. What happens 

if one slavishly imitates the procedure described here for 

hbelian theories? For example, one can expand the 

interactions of an O(3) symmetric theory in spherical harmonics. 

use the addition formula to factor out the dependence on the 

fields at different laitice points, and integrate over these 

fields as xie did in, say, (1.10). One is then left with a 

theory in which the indices of the spherical harmonics, P and 

m appear as fields which must be summed over. In analogy with 

(l.lOb) there is a “Lagtangian” which depends on (K.mI 

and a set of constraints which ate produced by the integration 

over the ori- field variables. Unfortunately, these -- 

constraints ate not just simple delta functions which can 

he completely and identically satisfied by a clever representation 

for the t’s and m’s. Thus the non-Abelian dual theory 

grncrated in this way is much mote complex than in the 

Ahclian case, although in certain li!its it may be possible 

to construct a tractable approximation using this representation. 4 

hooting the failure of this most obvious generalization of 

Abelian duality, we turn now to describe another approach. 
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11. The Duality Transformation 

As was mentioned in the introduction, the basic ingredients 

for the success of the duality transformation for Abelian 

gauge theories ate the Fourier transformation and the Bianchi 

constraint which emerges upon integration over the original 

vector potential. In this section we shall extend this 

ptinciple’snd try to formulate duality transformations for 

non-Abelian gauge theories. Specifically we shall consider 

a non-Abelian gauge theory (with a simple structural Lie 

group,(;) coupled to ar: external source in Euclidean four 

dimensional space, E4. Although the manipulations will 

be somewhat formal, at the end an intriguing form of a 

dual theory emerges. Various aspects of out dual fotmulations 

will be elaborated in Section III. 

To avoid proliferation of indices, we will use the 

following inner product notations throughout, except when a 

mote explicit notation is helpful: 

For fensots Fi’ and G’ iv, (i-group index) 

(F.G) Z jd’x Ftv GtY 

and for vectors Ai and B’ 

(A,B) Z Id4x A: B$tc., 

where summation over the repeated indices is understood. 
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Out starting point is the partition function, Z,of the 

theory given, in the notation above, by 

2 - I DA exp r-:(F(A;g),F(A;g11-1e(EIA)l (2.11 

where 

F;JA;g) 1 ap,t-a ~~ j k 
u u+gFijk *uAv (2.2) 

and r’ is a fixed, 
-lr CXtCtnal source while c.. 

1Jk 
aTe the structure 

co*sta*ts of the group, G. Gauge fixing (e.g. axial gauges) 

may be done without difficulty, but since, as we shall see, it 

does not play any essential role in the transformation, we shall 

formally proceed without explicitly fixing a gauge. As is usual 

for duaIity transformations’ the infinities generated by such 

a proccdute will appear in out dual form as a set of redundant 

delta-functions. 

it is convenient to scale Ai and Fiv defining 

a - gA, f(a) - gF(A;g) 

Then 2 becomes 

(2.3) 

2 - Pa exp f-4 (f(a),f(a))-i(S,a)) 
I 

(2.41 

4g 

xc now introduce an antisymmetric tensor field W:,,(X) and 

routiet transform (2.4) into the so called first order form, viz.. 

2 - Da& exp 1-g (w,w)-~(;.f(a))-i(F.a)) (2.5) 
I 

whe te 

G;” : ; Euvae YtB (2.6) 

is the dual of wi 
?Jv’ 

Notice that by this transformation, 

the coupling constant g is effectively inverted. 
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Let us examine the second term in the exponent of (2.5) 

more closely. Explicitly. 

(;,f(.a)) - d4x ;tv (Q+,a;+=ijk+:) 
I 

= 
I 

d4x ;;y(2a&cijk+~) t2.71 

It is convenient to introduce a symmetric, in general non- 

degenerate, matrix Tit(;) defined by 

$k(;) 5 ;i (2.8) 
.PV I1v ‘ijk 

This is to be regarded as a matrix in the pairs of indices G.IJ) 

and (k,v). For C=SU(Z). for example, it is a 12x12 matrix. 

Then by integration by parts, (2.7) becomes 

(i;,f(a)) - 2 d4xa&“a;) 
I 

- 2(a;,a)+(a.w (2.9) 

where a; stands for a ii’ 
Ir uv’ 

The first term is a surface term. 

By Stokes’ theorem, 

I 
d4x a,$$:) = 

I 
~ ds*;t,a; (2.10) 

where o is a closed surface at infinity. This may be further 

rewritten by introducing a surface current.5 Io), defined by 

i- ,. 
~[olv = 5” ;:Y 6[cT] 

(2.11) 

uhere fro* 
is a delta-function with its support on the surfaCe 

o,and s u is the unit vector outwardly normal to 0. Then (2.iO) 

takes the form 

I 
d4xa,,(+$ - 

I 
d4x E~,Iua~ - (CIoI.a). (2.12) 



Thus, the surface term in (2.9) has the same form as the 

external current term in (2.4). (2.9) now becomes 

(G.f(a)) - (a,Ta)-t(a;,a)+2(E~,I.a) (2.13) 

This form will be useful later. Using (2.13) in (2.51, we obtain 

2 
3 - j.naDw exp I-f- (w,w) +,T=) 

-i (5+Cc,l. a)*i(G,a) I (2.14) 

At this point one may perform the Gaussian integration over 

the vector potential, a:, and obtain the so called field 

strrcgth formSin which the theory is written entirely in 

tt-rms of v1 LiY’ But we shall resist the temptation to do 

the CLaussian integral, and instead follow a different route 

in our search for a dual theory. We recall from our study of 

.\hclian tkeorics that the second important feature of duality 

transformations is the existence of a Bianchi-identity-like 

delta function constraint through which one makes a transition 

into the space of dual variables. To make the scheme clear, 

we shall achieve this in two steps. First, ye perform a 

second Fourier transform on the quadratic part (in a) of the 

integrand in (2.14) by introducing a current j:(x). Viz., 

exp(-+.Tx)) = I nj (Jet Tlel’* exp IiCj.T-‘j)-i(j,a)) 
(2.15) 

i;iwre (det T)-1’2 1s necessary to cancel the functional 

determinant associated with the Gaussian integration. (2.14) 

then becomes 
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. 

2 - n=DwDj (det T)-*” exp (-$(~,w)+$(j,T-~j) I 
+ i(8C-j-E-EL,I.a)I (2.16) 

for which the integration over the a: is now trivial to 

perform. Making the shift of the variable j -t j+E+F,,,,, 

the result is 

2 - DwDj (rt T)-1’26(a;-j) I x, exp I-+ (w.u) + ~(j+c*Er,l ,T-*(j+C*Cto13) 1 
(2.18) 

As in the Abelian case, the delta function that appears in 

(2.18) comes precisely from the integration over the original 

degrees of freedom, i.e. the A:. To see that it is a kind 

of Bianchi constraint, we make a change of variables from 

j; to a dual vector potential b: defined by 

j: : 
-j k 

‘ijkWuv bu 

I fikbk 
(2.19) 

w u 
Then (2.18) becomes 

2 - CxDb /set 6(8;-Tb) I 
x CXF(- Yc (v.v)+t(b.Tb)-i(b,Fr.l) 
-i(b.E)+~(~*Erol,T-lo)l (2.20) 

Now with the use of this delta function, the second and the 

third term in the exponent of (2.20) may be written as 

$b.Tb)-i(b,CLoj) = -i(b,Tb)+i(b,Tb)-i(b,CIo)) . 

= -+ f(b,Tb)-2(a;,b)+2(E[(Il,b)) 

(2.21) 
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Eq . (2.15) , however, tells us that this is nothing but 
- 

- $ (J+. f(b)) 

Thus Eq. (2.20) simplifies to 

2 - I IMDb Jde b(a;-Tb) 

x er~i-~(V,Y)-~(lj,f(b]) 

- i [h,C)+$ tC+Elo~.T-l(E+CL,~)) 1 (2.22) 

To see the effect of the duality transformation more clearly. 

let us scale back the variables in the following manner. 

Define w and 5 by 

I 

w = 1 ,q 
g (2.23) 

b=;B 

,(;I and T(c) in terms of W are given by 

i 
(2.24) 

T(;) = ; T(W) - + T 

Thus (2.22) becomes 

z - I @WDB ;det 6(&$B) 

x exp (-i(W.W)-4 
G3 

Ci, F(B;$ 

-++& (P~+S~,~,~-‘(PS+~[,~))) (2.25) 

This is the direct generalization to the non-Abelian 

case of the dual form for Abclian theories, e.g. Eqs. (1.4) 

and (1.10). This form has a number of intriguing features 

as we shall discuss in detail in the.next section. 
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Before doing so, however, let us briefly comment on a 

mathematical ambiguity apparent in (2.25). There-appears. 

in the last scalar product in the exponent, a term (F, 
loI 

,flElal). 

This contains two surface delta-functions and hence is difficult 

to interpret. Such a term would have a well-defined meaning 

had we worked on a lattice. This suggests that a further 

study on regularization and renormalization of the theory 

is needed to clarify its meaning. Not having done this, we 

shall hereafter work on a closed manifold, so that we may 

drop the surface terms and study the corresponding expression 

for i given by 

2 - ~DNDB~~&- ; TB) 

e*p(+V,h+ (B,TB)-;(B.F) 

+ +gKF’c)). (2.26) 

We shall now turn to a discussion of various features of this 

form. 



-16- 

1x1. Aspects of the Ritual Representation 

Let us recall that in Abelian theories, the final step 

in the duality transformation is to express the theory in terms 

of the dual vector potential by integrating out the dual 

field strength variable with the help of the Bianchi- 

identity-like delta function. To proceed along the same 

lines with the form (2.25) obtained in the previous section 

ve need to solve the corresponding delta function constraint. 

1.e.. 

+fB = 0. (3.1) 

An obvious solution is the usual field strength form: 

Ni 
vu 

- Ft,,(B;+) - a,,Bt-a Bi+&,‘jkB;Bk,. 
vu B 

(3.2) 

Let us suppose for the moment that this is the only solution 

‘and perform the integration CJYE~ W. Noting that in such a 

$%;iB) - -+ (F(B;+),F(B;+)) 
z&z =R 

+ 5 
g I 

d4xaP(wtvB:) - surface term - 0 

(3.3) 

the partition function takes the form 

2 - DB J/det T(F(B;i)) exp(-:(F(,B;~),F(B;~)) 

- ; (B.E) + $ g(&(~(B;+))E)) (3.4) 
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So we obtain the intriguing result that the dual theory is 

again a non-Abelian gauge theory with the coupling constant 

inverted, albeit with more complicated self-interactions 

and more complicated interactions with the external source.@3 

Before continuing, we wish to point out a peculiar 

property of (3.4) under space inversion. Unlike the other 

terms, the lost term in the exponent is apparently odd under 

this operation. This is most likely an indication that the 

solution (3.2) is not unique, and that this peculiarity 

will disappear afterthe full set Of solutions of the gianchi 

constraint are taken into account. 

Although the form (3.4) is attractive and suggestive, 

we must go back and ask whether the Bianchi-like constraint does 

admit solutions other than the field strength form (3.2). 

One first notes that. due to the linear nature of the constraint 

for U, 

W - )i F(B+ (3.5) 

is also an admissible solution for any constant, h. Beyond 

this class of solutions, the question becomes a very complicated 

one,in contrast to the Abelian case. Although the constriant 

equation is linear in W, it becomes non-linear when IV is 

expressed in terms of B. This prevents one from writing 

down any simple solution besides (3.2) and (3.5). 



Obviously, one needs D more systematic appronch to the 

p,rohlem. One such possibility, which we shall explore, 

is a pcrturhative solution based on an expansion in povcrs of 

l/g. Afterall, the solutions (3.2) and (3.5) do have such 

a form. Further, in the limit of large g, such an expansion 

may hc u5cful in trying to formulate a strong coupling 

approximation to 2. We shall first try to construct a formal 

perturbative solution and then later discuss its use in a 

strong coupling approximation. As it turns out, even a 

perturharivc analysis of (3.1) is not so straightforward and 

requires some grncral results of harmonic analysis which 

are best described in the language of differential forms. 

I\‘e shall therefore only discuss the results of OUT analysis 

and rclrgntc the details to the appendix. 

The results wzrc obtained in a recursive form (see 

(A.20) or (h.22) in the Appendix), and when translated into 

a more familiar language are as follows: The general solution 

of (3.1) may be written in a,~ expansion in g -I as 
m 

xi _ 
“” 1 $1” $“)u” 

n-0 

(3.6) 

W;“)“Jx) - a~a:“),(x)-ayo:“)v(x) + r;“)p 
1 cijk 

-T Euvnla* C51%B3at 

x 
I 

day ‘3(x-y) a ay 
5 

tw~n-1)81B2(~)B~3(~)I 

(3.7) 
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where C(x-y) is the Green’s function defined by 

a*c(x-y) - a(‘)(x-y), (3.8) 

4”h 
(x) is a vector field, and y;,,)uv(x) is a tensor field 

satisfying 

a2 Y;“j”“rXl = 0. 

Furthermore, the fields in (3.7) must satisfy the constraint 

equation 

cijk ,j (n)uv B;(i) = -cijkc 
uya* EBp2R3a* (S.9) 

Y 
d4y G(X-y) 

It is not difficult to check that Eqs. (3.6)-(3.9) do generate 

the solution to (3.1) of the form (3.3) (see appendixj. IiOK-rV~~r. 

the complicated intcgrability condition (3.9) has so far 

prevented us from using the recursion relation (3.7) to explicitly 

write down the general solution to (3.1). (See the appendix 

for further discussion.) 

But let us suppose that we were able to overcome this 

technical difficulty and explicitly develop b’ in a porier 

-1 series in g . be now ask whether such an expansion in g -1 
can 

be used as the Basis for a systematic approximation procedure for 

quantities of physical interest in the theory. Of particular 

interest, of course. are quantities which are sensitive to 

the large distance structure of the theory such as the 
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asymptotic behavior of the Wilson loop. For such quantities 

is there any intuitive reason to suppose that such an 

expansion might be sensible? 

The almost universal expectation is’that QCD in one way 

or another confines quarks. If so, then the large distance 

structure of the QCD vacuum has significant contributions 

from field configurations with very large values of A,, and 

F “\I’ Now, in the sense of functional Fourier transforms, 

Y uy is conjugate to fuv and ju is conjugate to au, so we 

might suppose that the dominant contributions to the large 

distance structure of the theory come primarily from configurations 

of v 
U” 

and ju which do not have very large amplitude fluctuations. 

To see this more clearly we note in (2.4) that we expect 

significant contributions to Z from f 2 O(g). Thus we expect 

that w 2 0 (i, . Kow, at long distances, (or large coupling) 

xe anticipate that the dominant contributions to f comes from 

the term C _ ajak 
ilk ” v’ 

In the first place, if the dominant 

contribution to f came from the term linear in ai 
u’ 

then 

the strong coupling theory would look much like an Abelian 

theory in the original variables, ai -- u, plus, perh=ps. 

pcrturbative corrections, which is almost certainly not true. 

Second, since we expect large coupling to be associated with 

long distances (or low momenta) the term linear in ai may 

~~11 be additionally suppressed by the fact that the term 

involves a derivative (or extra momentum factor.) Thus. we 
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expect that [a.=] 2 O(g). Ignoring for the moment the factthat 

the commutator is not just a simple product, we are led to suppose 

that ai <O(G). Thus, from (2.15) we expect that j 2 O(L). 
G 

So, indeed, 2 should be dominated by configurations of v and 

j which do not have large fluctuations. Continuing with our 

heuristic arguments, we see from (2.19) that since j ; D(A) 

and w ; O(i), then bk < ocm. 
G 

11% 
Thus. superficially,fluctuations 

in b can grow as g grows. These considerations imply that the 

most naive approach to constructing a strong coupling 

perturbation expansion for Z may not be sensible. To see 

this lets look at the exponent of, say (2.26). Ignoring 

terms involving C.we note that the remaining two terms are 

both : O(1) so it is apparently not fruitful to try to 

perturb in either one of them. (Note that a similar analysis 

can be made using (2.25)). On the other hand, while this 

may be a correct conclusion, it’is important to remember that 

the arguments from which it was drawn were not completely 

airtight. In particular, in deducing that a z O(m and that 

b : Ocm we treated cross products and commutators as if they 

were simple multiplication. It is certainly possible 

for example, to have [a.a] < C(g) but still have a kO(/il). 

Unfortunately, it is not simple to rigorously determine 

whether or not there really are significant contributions to 

2 from configurations with b % O(.‘a, or whether the important 

contributions come only from smaller values of b. ThUS 



without further study we can draw no firm conclusions about 

how one might realize a sensible large coupling perturbation 

theory starting from the form (2.26). 

Befo,re leaving this topic it is worthwhile emphasizing that 

even if the fluctuations in b can he as large as o(G). the 

f:urtliatio:l5 in the (!~a1 field strcnpth, w, are still small 

(see c-g. (2.22)). This is co be contrasted with the fact that 

xhen g is large and a % O(,?) the fluctuations in the original 

field strength, f. are large. Furthermore we note that 2 has 

a representation in terms of the dual variables v 
PV 

and j 
u 

(~ec e.g. (2.18)) both of which have small fluctuations for 

larp- fi. Thus, the strong coupling vacuum defined in terms 

of the dual variab1e.s w and j should be “simpl’e” (i.e. not 

contain large fluctuations) while it is an open question 

whether it is “simple” in terms of b defined through (2.19). 

There are two other observations we wish to make about 

OUT result, one heuristic and one technical. The first 

concerns the size of the term =:5 2 . 
~n the exponent of, say 

(2.26). Recalling that w <O(i) we see that the coefficient 

of the E 
2 

term in (2.25) is a number of order g. xow 5 

represents the original external current which could he a 

quark current, so the 6’ term in (2.25) can be thought of as 

representing a kind of induced potential between quarks. 

Rut the coefficient of this term is =g and so this effective 

quark interaction is very strong for large g. Qualitatively, 

one expects a strong force to be generated between quarks 
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for large coupling, and it is suggestive that such an effect 

is readily apparent in OUT dual form. The question of 

whether or not this is significant for confinement 

requires further study. 

Cur final comment is a technical one. If one chooses to 

boldly pursue the analysis of (2.26) and tries to develop a 

computationally tractable strong coupling schcmc. one must 

decide .how to handle the factor [det TJ “’ in the functional 

integral. At least for the case of SU(2). an explicit 

expression for this determinant exists! Unfortunately, 

such an expression is not necessarily computationall) 

useful. An alternative method of dealing with this dcterminnnt 

is to introduce ghost fields and write an exponrntiated 

representation for it in the usual way. But from the point 

of view of perturbation theory this is not much better since 

there are no quadratic damping factors for the ghost field 

integrals _ A possible solution to this problem is to couple 

massive Higgs fields to the original gauge fields, at, and 

perform the duality transformations on this coupled theory. 

The exponentiated representation of the determinant wiil then 

have a well-defined perturbation expansion for any negative. 

non-zero Higgs mass term.’ Now the vacuum of the theory will 

certainly be different with the Higgs field than without. 

However. it may be that,for sufficiently small negatiyc 
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fiiggs mass term we would be able to see the effects of the 

unbroken, symmetric theory over distances r $ i. If so, it 

might be possible to deduce some of the features of the 

symmetric. strong coupling vacuum from such a calculation. 

Such a result would be analogous to the behavior expected 

near a second order phase transition. 
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IV. Conclusions and Summary 

Motivated by an analogy with Abelian theories, we have 

constructed a duality transformation for non-Abelian theories 

which has a number of interesting properties. First, under 

our transformation the coupling constant gels inverted in a 

certain sense, so that our dual variables are expected to 

have only small fluctuations when the coupling constant is 

large. This is precisely the kind of behavior we encounter 

when applying duality transformations to Abelian theories. 

Second. our dual form has. loosely speaking, the structure 

of a gauge theory. Recall, for instance, that the contribution 

to the dual form of 2 from Wuv(B.,) chosen to be the usual 

field strength tensor (which therefore satisfied the Bianchi- 

identity like constraint in (2.26)) had a form quite close to 

that of the usual generating~ functional for the non-Abelian 

gauge theory, but with g + g-l. Finally. the dual form of 

the generating functional. e.g. (2.26). is rather elegant. 

One of the factors that appears in the dual iorm of 2 

is a functional delta function enforcing a Aianchi-identity 

like constraint on the fields W,” and Bu. It is therefore 

of interest to ask what K’s arc allowed by this i?ianchi-like 

constraint for a given B. This probIem was discussed in 

Section III and a systematic formal, perturhativr (in powers 

of B 
-1 ) solution was studied. Having understood, ar least 



formally, what W’s and B’s are allowed by the Bianchi 

constraint, we investigated the possibility of using OUT 

dual for” of the generating functional to construct a SyStCmatiC 

strong coupling approximation scheme. Unfortunately such a 

scheme proved to be very elusive, and we failed to satisfactorily 

for”lll:ztc “TL<‘. Scvrrthcless, ;n analogy to what hn~pcns in 

!\!>r~inn tiirorirs, it is quite Possible that O~C or the other 

of our ~1~1 forms may be able to provide us with a starting 

Point for such an expansion. In view of this possibility 

and in view of the suggestive structure and intriguing 

.proycrtic; of our dual form we feel that this approach merits 

further study. 

Ackn,owIedgcmcnts 

tic arc very grateCu1 to >l. Einhorn, D. h’illiams. Y.-P. Yao 

and especially Daniel Burns for many useful comments. R.S. 

,also thanks J. Kiskis for a number of enlightening discussions. 



Appendix. _ Perturhative Solution to the Bianchi Constraint. 

In this appendix, we shall discuss the perturbative 

solution to the Bianchi constraint 

-. 
a 2 -1 c.. WJ k = 0 

” “V g Ilk wB” 
(A.11 

defined over a closed, compact, but not necessarily simply 

connected manifol?,>I. To facilitate olir msnipulatiox~ 31111 10 

utilize 5cnc po\~erful result5 of hnrm9nic an31ysis. hC Crnillc’) 

the elegant formalism of differential ferns. h’e shall give 

only th& minimum of definitions and notations which are 

necessary for the analysis and quote theorems and prapositions 

without proof. The interested reader cnn find more detail> 

in, for example, Ref. IO. 

I\‘e begin by defining the Lie algebra valued l-form B 

and 2-form % by 

B : B;ei dx’ : Bie. 1 

w : +wi e uv i dx’ndx’ : Wiei (A.21 

Khere fei) are the generators of the Lie algebra of the 

structure group G satisfying 

[ei’Cjl - Cijkek (A. 3) 

and the symbol n denotes the antisymmctric cx:rrior product. 

The bracket product such as [I\‘,S] will often be used. which, 

is a shorthand notation for wi*BJ[ei,ej]. The linesr operator l 

(the Hedge star operator) produces from a p-form its pual 

(4-p)-form (in four dimensions). In particular *B (a S-form) 



formally, what Ws and B’s are allowed by the Bianchi 

constraint, we investigated the possibility of using our 

dml form of the generating functional to construct a. systematic 

strong coupling approximation scheme. unfortunately such a 

scheme proved to be very elusive, and we failed to satisfactorily 

iormulntr omit’. Severtheless, in analogy to what happens in 

;\hrl ian theories, it is quite possible that one or the other 

of our dual forms may be able to provide us with a starting 

point for such an expansion. In view of this possibility 

and in view of the suggestive structure and intriguing 

~ropertic~ of our dual fern we feel that this approach merits 

further study. 
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Apl”“dix. _ Perturhativr Solution to the Bianchi Constraint 

1n this appendix, we shall discuss the pcrturbative 

solution to the Bianchi constraint 

5 ;i 

-. 

-1 c. ~‘1 k = 0 IJ PV g lJk W’~IJ (A. 1) 
defined over a closed, compact, but not necessarily simply 

connected nanifold,N. To facilitate our manipulationS an<] to 

utilize some powerful results of harmonic analysis, bye employ 

the elegant formalism of differential forms. we shall give 

only the,minimun of definitions and notations which are 

necessary for the analysis and quote theorems and propositions 

without proof. The intcrestcd reader can find more detail!, 

in, for example, Ref. 10. 

lie begin by defining the Lie algebra valued l-form B 

and Z-form W by 

B s B;ei dxu s Bie. 
I 

W+A uv i dx”ndx” s W’ei (A.21 

where (ei) are the generators of the Lie algebra of the 

structure group G satisfying 

lei.ejl - c...e 
1J6 k (A. 31 

and the symbol n denotes the antisymmetric exterior product. 

The bracket product .such as [Ic’,B) will often be used, which 

is a shorthand notation for wi*BJ[ei,ejl. The linear operator l 

(the Hedge star operator) produces from a p-form its dual 

(4-p)-form (in four dimensions). In particular *B (a 3-form) 

_ 
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*a - 
1 
JT ‘pvpa Bo’i 

i dx”ndx”*dxa 

l w - ; W;veidx”~dxu (A.41 

‘*B = ..B, **u = w 

(me l operation depends on the mtric of the rxnifold. 

‘rhi-oi:g:;ont k’e ic,nsider a Euclidcan metric.) 

1%~ diffeivnltial opwator d which seiGir a p-form into a 

k3*l,.fc.m is deli, Ed by 

,I? = 0 

.:3(RylJ*v) - B” ,dJ:Adx” = ;(B, P-B\,,V)dx”ndxY 
, 

d(;tiuv~x”.,dx”) - ;w,, o dxo.\dx”n,ilx” (A. 5) 
. 

an13 “W (a 2-form) are def3,nzd by 

l.;~ie ,a denotes Jifferentiation with respect to xo. The 

cwdiffercmtial oi;erator 6 and the Laplace-Beltnni operator 

A are defined by 

.3 SE -*d* (Euclidean metric) 

A = d5 + Zd 

6 ai’.3 A map a p-f~,ru into a p-l form a!ld a p form, respectively. 

A differential f:.,,!n -f is said to EC h:lr:aonic if Ly - 0. 

KC use X’ to dc;!ste the space of hayzonic foms and the 

yrvjectioil c~craror which projects out the harnonic part of 

:I Slifferenrial fern will be denoted by H. A in general does 

not liss-? an ii3vrrse. Rather. there exists a mique integral 

‘>cTztor, G, (CL-ccn’s operator) such that 

. . 
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AC, = GA d l-14, GH = ilc = 0 (A.61 

;o that s :I:~s a miqae inveise if bud only if it is restricted 

to cpeiac.? on the space nf forms without a I,aricmjc gar~t. 

S;;x mcful ]‘iL.gerties of these differential o&rato,rs a:e 

(il dA - ‘d. 6A = A6 

(ii) Gd = dir,, G6 = 6G 

(iii) 5-f 9 0 * d-r if .icY i.?. 7) 
[i.i) 6’ is iJ 

( ‘.’ ) I(.: A 511 S 0 1’3 - tiii Ix IJ 
. . 

i1.::1;,, 
, a 

!hi. : i.c~:il i*o 9 i‘or?als ail inner i>! :2c?i:c:.t < ,:,, ;) 

is 62;’ ..;-CJ by 

(3,j) : I 
1st 

c.\*3, 

!,!,iih >,zs t?.e follor;iny properties: 

(i) (u.6) = (3.n) 

(ii) (\,,U) s(-.~)3=o 

(iirj ($a,3 )=<x,d$) (A. 81 
i;,., I, . . , ,-,-A = c =>:a = 0 

:v.itil :f.:*is i:othtisns and definitiocs wz may ::cv ctart 

O>,T _~:’ ;:>,q is. ‘The Bianchi constraint takes the siz;j~z rorm 

,A;< 5 ; [X,3] f.A.9) 

.;i.;‘I/ilrg thz G,iCi~i tar d to both sides of (A.91 nr?d r,xailing 

i t. a f i 2 i !, , LC l:ave the integrability condition. 

<.(;I,B] -* 9. (A. 10) 

7.1 SC.,-CC (.4.9) per:urbative:y in ?oxers of l/g, it is best 

10 fixt libr,5fo,,;i it into an intcgra: eqution. For this 
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10 
purpose we can use the Hodge decomposition theorem. It 

states that my differential form W may be uniquely decomposed 

in the following form: 

W - da + 68 + y 

with YEW (A.111 

Applying this to (A.91, we get 

d66 - $81 (A.121 

Applying the theorem once again to 6 itself, viz.. 

6 - da’ + 66’ l Y’, y’cY (A-13) 

we obtain 66 - 6da’. That is, the bB’+y’ terms do not 

contribute to h’. We may therefore always choose B such that 

dB=0, H3-0 (A.141 

,using this gauge condition, we have d6B -.[d6+6d)B - A6 

and Eq. (A.121 becomes 

A6 - ; [r,B] (A.151 

iiou in order that this has a solution, the RHS of (A.151 

must be in II. Thus we must demand 

H[W,B] - 0 (A-16) 

It is then not difficult to show that (A.lO) and (A.161 

may be replaced by a single condition 

(I - dG6)[N.B] - 0 (A.171 

Then the solution to (A.lS) is 

%- + G[W,B] (~.I81 
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Notice that due to the integrability condition this properly 

satisfies the gauge condition (A.14). Putting this hack into 

(A.111, we find 

W - do + y + +dG[W,BJ (A. 19) 

This, together with (A.17). is the desired integral equation. 

To solve (A.19) we may not simply iterate it since 

do + -y is not necessarily of order 1. However, we can in general 

expand W.o and y in powers of l/g. viz.. 

w - i (g W(“) 
n-0 

0 - y $1" a(n) 
n-0 

Y - i ty Y(“) . 
n-0 

(A. 20) 

Substitution of (A.201 into CA.171 and (A-19) yields 

Cl-dWW(,).Bl - 0 (A.21) 

with 

W(“l - du(,,) + ~(~1 l 6GiW(n-1),Bl (A.221 

If it were not for the integrability condition (A.zi), the 

recursive formula (A.221 would immediately give the desired 

solution. But because of (A.21). da(n) and yCn) are constrained 

in a complicated manner,for each n making it difficult to 

explicitly write down the most general solution. 

- 
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It is howcvcr instructive to show how the particular 

solutions of the form ;V = hF(B;i) are generated using (A.211 

nnd (A.22). First, we take da 
(01 

- adB and yco] - 0, i.e. 

“‘(0) - 1dB (A.231 

This satisfies (A.21). We then choose dfi(,) - 3 dG6[B,B] 

;Illd y 
(1) 

- i II[R,llj in (A.22). This gives 

w(1) = 2 dGb[B.B] + + H[B,B] l 6G(dB,B] 

- $ (dG6 + 6Gd + H)[B.B] 

=; (CA + Ii)[B.B] 

= + [B,B] (A.24~ 

Row (A.21) is again satisfied due to the Jacobi identity 

[[B,Bl,Bl - 0 (A.251 

Choosing docnj - Y(,,) = 0 far n F 2. we then find WbI-0 

for n ) 2. Thercforc the series terminates and we obtain 

an cxxt solution 

w - H(O) + $ W(l) - X(dB + ’ z [B,Bl) 

- AF(B;$ (A. 26) 
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